

Online Low Temperature Plasma (OLTP) Seminar February 25, 2025

Nonequilibrium Plasma Kinetics in a Heated Flow Reactor Excited by a Ns Pulse Discharge

Igor Adamovich

Sai Raskar, Keegan Orr, Matthew Berry, Hamzeh Telfah

Department of Mechanical and Aerospace Engineering The Ohio State University

Ns pulse burst discharges in preheated reacting gas flows:

- High reduced electric field (E/N): generation of excited species and radicals
- Low duty cycle (~ 1/1000): superior stability at high pressures
- Discharge electrodes external to reactor: no catalytic effect
- Excitation energy controlled by varying number of pulses
- Large-volume, quasi-0-D plasmas sustained at pressures up to 1 atm
- Time-resolved measurements of plasma parameters, species over a wide range of time scales (ns to ms)

Previous work: kinetics of plasma-assisted combustion

• Time-resolved, absolute measurements of temperature, N₂(v) populations, atoms (O, H, N), radicals (OH, HO₂), products of H₂ and C_xH_y oxidation

Experiment Schematic: Heated Plasma Flow Reactor

Nitrogen, T₀=300 K, P=100 Torr

- Nitrogen, N₂-NO, N₂-O₂, O₂-Ar, N₂-H₂, P = 0.1 - 1 atm, slow flow (0.1-1 m/s)
- Independent temperature control: flow preheated in tube furnace, $T_0 = 300-1000$ K
- Parallel plate electrodes external to reactor: no catalytic effect

Optical access for diagnostics

- Laser absorption spectroscopy
- Cavity Ring Down Spectroscopy
- Vacuum UV absorption
- Single-Photon and Two-Photon LIF
- CARS

I. Kinetics of Ionization in Nitrogen and in N₂-O₂ Plasmas

II. Kinetics of O Atom Recombination in Partially Dissociated O₂-Ar

III. Kinetics of Plasma Catalytic Ammonia Synthesis in N₂-H₂

I. Kinetics of Ionization in N₂ and N₂-O₂ Plasmas

Motivation:

- Plasmas around atmospheric reentry vehicles cause communication blackouts
- Associative ionization: primary mechanism of plasma generation,

 $N + O \rightarrow NO^+ + e$, $N + N \rightarrow N_2^+ + e$

• Excitation (N^{*}, O^{*}) enhances ionization rate

Objectives:

- Measure metastable $N_2(A^3\Sigma_u^+)$ molecules (precursor of metastable atoms)
- Measure metastable N(²D,²P) atoms (ionization precursors)
- Measure ions (N_2^+) generated by associative ionization of $N(^2P) + N(^2P)$
- Measure ions (NO⁺) generated by associative ionization of $N(^{2}D) + O(^{3}P)$
- Infer rates of associative ionization of excited atoms in the afterglow

Discharge Waveforms and Plasma Images

N₂, T₀=1000 K, P=100 Torr

- Ns pulse discharge excitation (30 kV, 10 ns @ 100 kHz): stable, diffuse plasma
- Tunable Diode Laser Absorption Spectroscopy (TDLAS), $N_2(A^3\Sigma_u^+, v)$
- UV Cavity Ring Down Absorption Spectroscopy (CRDS), N₂⁺(v)
- Vacuum UV absorption, N(²D,²P) (in progress); Mid-IR CRDS, NO⁺ (in progress)

N₂($A^3\Sigma_u^+$,v=0,1) Measurements (TDLAS)

- Nitrogen, P=100 Torr, T₀ = 1000 K
- $N_2(A)$ generation: $N_2(X) + e \rightarrow N_2(A,B,C), N_2(C) \rightarrow N_2(B) \rightarrow N_2(A)$

- Decay between pulses: energy pooling, $N_2(A) + N_2(A) \rightarrow N_2(B, C) + N_2$
- Decay during burst: quenching by N atoms, $N_2(A) + N \rightarrow N_2 + N^{(*)}$

N₂⁺(v=0) measurements (pulsed CRDS)

Nitrogen, P=100 Torr, T₀=1000 K

- Ring down spectrum, 15 µs after the burst
- $[N_2^+(v=0)] = 5 \cdot 10^{10} \text{ cm}^{-3}$
- Uncertainty / detection limit ~ 10⁸ cm⁻³

- Non-monotonous variation of $[N_2^+]$ in the afterglow
- Associative ionization of N* is unlikely (too slow)

1 Pulses

60 Pulses 120 Pulses

200

Measurements of N(2P,2D):Atomic Resonance Absorption Spectroscopy (ARAS)

- Use "probe" ns pulse discharge to generate Vacuum UV emission at 148 and 174 nm
- Measure resonance absorption in the "main" discharge afterglow

Furnace

- Infer time-resolved number densities of N(²D,²P) in the afterglow
- Use the same approach for $O(^{3}P)$ atoms in N₂-NO plasma

ARAS: N(²P) Population in Afterglow

N₂, P = 50 Torr, T = 800 K, emission / absorption at λ = 174.25 nm

- Main discharge: 1-40 pulse burst at 100 kHz
- Accumulation of N(²P) in long bursts
- <u>Caution:</u> data need to be corrected for line self-absorption in probe discharge

- Heated plasma flow reactor ($T_0 = 300-1000$ K) excited by ns pulse discharge used for time-resolved, absolute measurements of
 - > Metastable $N_2(A^3\Sigma)$ molecules (precursor of metastable atoms)
 - ➢ Molecular ions, N₂⁺
 - ➢ Metastable atoms, N(²D,²P) (associative ionization precursors)
- Transient rise of N_2^+ in the afterglow is not fully understood, kinetic modeling in progress
- In progress: diagnostics for measurements NO⁺ ions, inference of N^{*} + N^{*} → N⁺₂ + e⁻ and N^{*} + O^{*} → NO⁺ + e⁻ ionization rates

S. Raskar, AIAA Paper 2024-1825, AIAA Paper 2025-0990 (manuscript in preparation)

II. Kinetics of O Atom Recombination in Partially Dissociated O₂-Ar

Motivation:

• O atoms generated during atmospheric reentry recombine in boundary layer,

 $O + O + M \rightarrow O_2(v) + M$

• Energy stored in O₂(v) vibrational mode controls surface heat flux

Objectives:

- Measure O atoms generated in a ns pulse discharge, $O_2 + e \rightarrow O + O + e$
- Measure vibrational populations of recombination products, $O_2(v)$
- Quantify the effect of ozone reactions on O atom recombination kinetics
- Compare results with kinetic modeling, infer state-specific recombination rates

Discharge Waveforms and Plasma Images

- Single shot plasma images
- 20% O₂ Ar
- P=200 Torr, T₀=600 K

• Ns pulse discharge burst:

100-200 pulses @ 100 kHz,

burst repetition rate 10 Hz

Temperature: Rayleigh Scattering at 355 nm

 $T_0 = 600 K$

 $T_0 = 800 K$

- Discharge heats the flow by up to $\Delta T=100 \text{ K}$
- Temperature reduced in the afterglow, due to convection, wall diffusion

O₂(v) and O Atoms: Laser Induced Fluorescence

- LIF: excitation, fluorescence on Schumann-Runge bands: $O_2(v = 8-13, 17-20)$
- Calibration by NO LIF

- TALIF: two-photon excitation
- Calibration in Xe

• Absolute calibration: need better laser output stability, accuracy of LIF spectroscopic model

O Atom Decay: Kinetic Mechanisms

- Generated by electron impact, quenching of Ar*:
 - $O_2 + e \rightarrow O + O + e$

$$Ar + e \rightarrow Ar^* + e$$

$$Ar^* + O_2 \rightarrow Ar + O + O$$

• Recombination pathways: $O + O + M \rightarrow O_2(v) + M$ $O + O_2 + M \rightarrow O_3 + M$ $O + O_3 \rightarrow O_2(v) + O_2(w)$

• Modeling predictions consistent with O atom data

O₂(v) Time Evolution: Kinetic Mechanisms

 $O_2(v=9)$ relative population at $T_0 = 400$ K, P = 200 Torr

Dominant Processes:

Electron Impact (During the Burst)

 $O_2 + e \rightarrow O_2(v) + e$

Vibrational Relaxation (Rapid) $O_2(v) + O \rightleftharpoons O_2(v-\Delta v) + O$ $O_2(v) + O_2(0) \rightleftharpoons O_2(v-1) + O_2(1)$

Chemical Reactions (Slow)

 $O + O + M \rightleftharpoons O_2(v) + M$

 $O_2 + O + M \rightleftharpoons O_3 + M$

 $O_3 + O \rightleftharpoons O_2(v) + O_2(w)$

Similar behavior for O₂(v=8-21), T₀ = 400-800 K

II. Summary

- Heated plasma flow reactor used for time-resolved measurements of O, $O_2(v)$
- Heating improves plasma stability, suppresses ozone formation
- O₂(v=8-13,17-21) detected on time scale much longer than V-T and V-V relaxation, comparable to O atom decay time
- Kinetic modeling: dominant generation and decay processes for **O** and **O**₂(**v**)
- Results indicate $O_2(v)$ generation in chemical reactions, $O_3 + O \rightarrow O_2(v) + O_2(w)$
- Isolating $O + O + M \rightarrow O_2(v) + M$ reaction: need complete O_2 dissociation in the discharge (lower O_2 mole fraction)
- Need better absolute calibration of O₂(v)

K. Orr, PSST 34 (2025) 015002

III. Kinetics of Plasma Catalytic Ammonia Synthesis in N₂-H₂

Motivation:

- Isolate kinetic mechanisms of plasma catalytic ammonia generation
- Previous work suggests contribution of $N_2(v)$ dissociation on catalyst surface
- N₂(v) data not entirely convincing (OES)

P. Mehta, Nature Catalysis 2018

Objectives:

- Generate atomic species (N, H) and N₂(v) molecules selectively, in a "hybrid" ns pulse / RF discharge
- Isolate effect of N₂(v) from that of N, H atoms on NH₃ generation
- Isolate effect of N₂(v) from that of N, O atoms on NO generation

Previous Work: N and H atoms in Ns Pulse Discharge

- Time-resolved, absolute [N] and [H] in N₂-H₂ plasmas (without catalyst)
- Dominant reactants for plasma catalytic NH₃ generation, generated efficiently
- Kinetics are well understood

Previous Work: RF Excitation Enhances N₂ Vibrational Populations

- RF excitation heats the electrons, enhances N₂ vibrational temperature
- <u>Independent</u> control of vibrational excitation
- Kinetics are well understood

NH₃ Yield in Ns-RF Discharge: Higher Than in Ns Discharge Alone

Ns pulse train only

Ns pulse train + RF waveform

- 20% H₂ in N₂, 190 Torr, 573 K
- 25% yield increase in Ns-RF on Ru catalyst
- RF effect scales with number of ns pulses
- Surface-dominated process
- Similar effect on Ni and Rh catalysts

O Ns-RF Discharge Does NOT Produce Additional N, H Atoms (also NH₃ Reactants)

- $N_2(A^3\Sigma, v=1)$ peak population, decay rate in Ns pulse, Ns + RF discharges are the same
- No evidence of additional generation of N and H atoms (both rapid N₂(A) relaxers)

Additional Evidence: NO Generation in Hybrid N₂-O₂ Plasmas

5% O₂ in N₂, 190 Torr, 573 K

- NO yield enhancement 30-50%
- Consistent with known NO generation kinetics:

 $N_2(A^3 \Sigma_u^+) + \mathbf{0} \to N\mathbf{0} + N \quad \text{(ns pulse train only)}$ $N_2(X^1 \Sigma_g^+, \mathbf{v} \ge \mathbf{12}) + \mathbf{0} \to N\mathbf{0} + N \quad \text{(ns + RF)}$

- Plasma-catalytic NH₃ generation in ns pulse discharge with sub-breakdown RF
- RF excitation leads to reproducible ammonia yield enhancement in a surface-dominated process, on several catalysts (Ni, Ru, Rh)
- RF excitation DOES increase N₂(v) populations, does NOT increase N and H number densities
- Suggests contribution of N₂(v) molecules to plasma-catalytic NH₃ generation
- RF excitation also enhances NO yield in N₂-O₂ plasmas, likely via the vibrationally stimulated Zel'dovich reaction, $N_2(X^1\Sigma_g^+, v) + O \rightarrow NO + N$
- Additional verification needed: simultaneous measurements of N, H, N₂(v) in hybrid ns + RF plasmas

M. Berry, AIAA 2024-1826 (manuscript under review)

Acknowledgements

US Department of Defense / Office of Naval Research MURI "Development of Validated Hypersonic Plasma Kinetics Models Including Atomic Excitation"

US Department of Energy Center for Plasma Interaction with Complex Interfaces (PICI)

US Department of Energy Collaborative Center for Plasma Assisted Combustion and Catalysis (PACC)

